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Abstract In this study, a theoretical method is applied to investigate the multiple
scattering of thermal waves and temperature field resulting from a subsurface cylin-
drical inclusion in a semi-infinite functionally graded material (FGM). The adiabatic
boundary condition at the semi-infinite surface is considered. The thermal waves are
excited at the surface of semi-infinite functionally graded materials by modulated
optical beams. The model includes the multiple scattering effects of the cylindrical
thermal wave generated by the line heat source. According to the wave equation of
heat conduction, a general solution of scattered thermal waves is presented. Numerical
calculations illustrate the effect of subsurface inclusion on the temperature and phase
change at the sample surface under different physical and geometrical parameters.
It is found that the temperature above the conducting cylindrical inclusion decreases
because of the existence of the inclusion. The effect of the inclusion on the tempera-
ture and phase change at the surface is also related to the non-homogeneous parameter
of FGMs, the wave frequency of thermal waves, and the distance between the inclu-
sion and the semi-infinite surface. Finally, the effect of the relaxation time of buried
inclusion on the temperature and phase change at the surface is examined.
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List of Symbols
λ Thermal conductivity of FGMs
cp Specific heat capacity of FGMs
ρ Mass density of FGMs
D Thermal diffusivity of FGMs
τ Relaxation time of FGMs
λ1 Thermal conductivity of the inclusion
cp1 Specific heat capacity of the inclusion
ρ1 Mass density of the inclusion
D1 Thermal diffusivity of the inclusion
τ1 Relaxation time of the inclusion
a Radius of fibers
b Buried depth of the subsurface cylindrical inclusion
f Frequency of ultrashort laser pulse
σ Spatial variational exponent of physical parameters
∇ Hamiltonian operator
T Temperature in composite materials
c Propagation speed of thermal waves in FGMs
c1 Propagation speed of thermal waves in the inclusion
T0 Average temperature
ω Incident frequency of thermal waves
ϑ Wave field of thermal waves
κ Propagating wave number of complex variables
k Wave number of thermal waves without diffusive effect
α Wave number of thermal waves
β Absorption coefficient of thermal waves
ϑ0 Temperature amplitude of incident thermal waves
Jn(·) nth Bessel function of the first kind
Hn(·) nth Hankel function of the first kind
Al

n, Bl
n, Cl

n, El
n Mode coefficients

Subscripts
1 Actual inclusion
2 Image inclusion
l Reflected time

Superscripts
(in) Incident thermal wave
(s) Scattered thermal wave
(r) Refracted thermal wave in the inclusion
(t) Total temperature field in FGMs
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1 Introduction

The thermal wave method is an efficient tool for the nondestructive evaluation (NDE)
of opaque materials. Thermal waves are generated in a material as a consequence of
the absorption of an intensity modulated light beam. These highly damped thermal
waves propagate through the material and are scattered by the buried heterogene-
ities. Different photothermal methods can be used to detect the subsequent modulated
temperature field at the sample surface: “mirage” effect technique, infrared (IR) radi-
ometry, thermo-reflectance, etc. Their selection depends mainly on the optical and
thermal properties of the sample. The main goal of this methodology is to retrieve the
geometrical (size, depth, orientation), and if possible, the thermal characteristics of
the subsurface scattering features. Due to its noncontact, nondestructive, and highly
sensitive nature, photothermal radiometry (PTR) has recently become a powerful tool
for the thermal characterization and nondestructive evaluation of broad classes of
materials.

First, Ocariz et al. applied photothermal method to locate and characterize the
geometrical and thermal properties of the buried cylinder theoretically [1] and experi-
mentally [2]. Subsequently, Salazar et al. [3] used this method to calculate the in-plane
effective thermal diffusivity of unidirectional fiber-reinforced composites. Salazar and
co-workers also extended this classical flash method to study the surface temperature
resulting from nonplanar samples, such as solid cylinders [4], hollow cylinders [5,6],
and spheres [7]. Recently, Madariaga and Salazar [8] exploited this elegant method to
express the surface temperature of multilayered spherical samples with continuously
varying in-depth thermal conductivity. In a series of studies of Wang et al. [9], photo-
thermal radiometry (PTR) was used for the quantitative nondestructive evaluation of
samples with curved surfaces, cylindrical composite structures [10], and spherical
geometries [11].

Functionally graded materials (FGMs) are the new generation of composites, and
is an important area of materials science research. The volume fraction of materials
changes gradually, and the non-homogeneous microstructures in the materials produce
continuously graded macroscopic properties, such as the heat conductivity, specific
heat, and mass density. All the properties have many potential applications, e.g., ther-
mal barrier coatings, thermal protection of reentry capsules, furnace liners, personal
body armor, and materials of elevated temperature and heat resistance for electro-
magnetic sensors [12]. In an ideal FGM, the material properties may vary smoothly
along one direction. As an example, having a smooth transition region between a pure
metal and pure ceramic would result in a new type of material, which combines the
desirable high-temperature properties and thermal resistance of a ceramic with the
fracture toughness of a metal. With the wide application of FGMs in engineering, it is
desirable to apply nondestructive evaluation (NDE) to retrieve the geometrical (size,
depth, orientation) and thermal characteristics of the subsurface scattering features in
FGMs.

Different physical parameters and boundary conditions of subsurface defects have
great effects on the propagation and diffusion of thermal waves, which are directly rep-
resented by the temperature field at the surface of FGMs. By using the detecting system
of thermal waves and measuring the changes of temperature at the surface of FGMs,
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the properties of internal structures can be obtained for purposes of detection and
inspection [13]. The non-destructive detection technology is of considerable impor-
tance in the research of designing new FGMs in aerospace engineering, and improving
the reliability of industrial products and facilities.

At present, in infrared thermal imaging, the physical models applied to determine
the temperature distribution of the sample with defects are still based on the classical
Fourier heat conduction law. Namely, parabolic equation of heat diffusion is often
applied to compute and analyze this model [14,15]. The classical Fourier law is quite
accurate for the heat conduction in most common engineering situations. However, for
situations involving very short times or extreme thermal gradients resulting from the
graded properties of materials, Fourier’s law becomes invalid. So, the non-Fourier heat
conduction law was developed. The wave models, which can describe the relaxation
behavior of heat conduction, represent the modifications for the classical theory of
Fourier heat conduction. When the equations of heat conduction and energy are incor-
porated, the hyperbolic equation of heat conduction can be obtained. In many cases
(e.g., laser heating, multilayer insulation at the low temperature, superconducting film,
etc.), non-Fourier heat conduction is encountered [16,17]. Recently, Ma and Tan [18]
have applied the non-Fourier heat conduction model and wave function expansion
method to analyze the temperature distribution at the surface of functionally graded
materials resulting from subsurface spheroids.

To the authors’ knowledge, photothermal methods have not been applied to study
the semi-infinite functionally graded material with a cylindrical inclusion. The main
objective of this study is to investigate the multiple scattering of thermal waves result-
ing from an embedded cylindrical inclusion in a semi-infinite functionally graded
material, and the adiabatic boundary condition at the surface is considered. The non-
Fourier heat conduction law is applied to deal with the graded properties of FGMs, and
the hyperbolic equation of heat conduction is solved by employing the wave function
expansion method. The expanded mode coefficients are determined by satisfying the
boundary conditions of cylindrical inclusion and semi-infinite surface. The adiabatic
boundary condition at the semi-infinite surface is satisfied by using the image method.
The analytical solution of the temperature field at the surface of FGMs is presented.
The effects of incident wave number and the structural and physical parameters of
FGMs on the temperature distribution at the semi-infinite surface are analyzed.

2 Thermodynamic Equation of Thermal Wave Propagation and Its Solution

A semi-infinite functionally graded material is considered, as depicted in Fig. 1. A
cylindrical inclusion of radius a is embedded in the FGM structure. The depth of
the center of cylindrical inclusion beneath the surface is b. The thermal conductivity,
thermal diffusivity, specific heat at constant pressure, and density of the cylindrical
inclusion are denoted as λ1, D1, cp1, and ρ1. Let an ultrashort laser pulse modulated
at frequency f hit the surface of heated materials along the x direction. The thermal
waves are generated in FGMs. Based on the non-Fourier law of heat conduction, the
governing equation of temperature in the materials, as utilized in a previous investi-
gation [19], can be written as
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Fig. 1 Schematic of the
embedded inclusion and the
incident thermal waves in a
semi-infinite functionally graded
material
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∇ · (λ∇T ) = ρcp

(
∂T

∂t
+ τ

∂2T

∂t2

)
. (1)

where ∇ = i∂/∂x + j∂/∂y is the Hamiltonian operator and λ, cp, and ρ are the thermal
conductivity, the specific heat at constant pressure, and the density of FGMs, respec-
tively; τ is the exponential relaxation time needed for reaching new equilibrium in
FGMs, and T is the temperature in FGMs. It should be noted that the exponential
relaxation time is a thermodynamic property of the materials.

Assume that the density and relaxation time of materials are constants. The thermal
conductivity and the specific heat at constant pressure of FGMs vary gradually along
the x direction. The variations of them have an exponential form [20–22], namely,

λ = λ0 exp(2σ x), cp = cp0 exp(2σ x). (2)

Here λ0 and cp0 denote the thermal conductivity and the specific heat at the position
of x = 0, respectively. σ is the spatial variational exponent of physical parameters,
and denotes the non-homogeneous property of FGMs.

Substituting Eq. 2 into Eq. 1, the following equation can be obtained:

∇2T + 2σ
∂T

∂x
= 1

c2

∂2T

∂t2 + 1

D

∂T

∂t
, (3)

where D (D = λ/ρcp = λ0/ρcp0) is the thermal diffusivity of FGMs and c = √
D/τ

is the propagation speed of thermal waves.
The solution of a periodic steady state is investigated. Assuming that T = T0 +

Re[ϑ exp(−iωt)], the following equation can be derived in terms of Eq. 3:

∇2ϑ + 2σ
∂ϑ

∂x
+

(
ω2

c2 + iω

D

)
ϑ = 0, (4)

where T0 is the average temperature, ω = 2π f is the incident frequency, and i = √−1
is the imaginary unit.

Thus, the solution of Eq. 4 takes the following form:

ϑ = exp(−σ x)u(x, y), (5)
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in which the function u(x, y) should satisfy the following equation:

∇2u + κ2u = 0, (6)

where κ =
(

ω2

c2 + iω
D − σ 2

)1/2 = α + iβ is the wave number of complex variables,

and α, β are the wave number and the absorption coefficient of thermal waves, respec-
tively. Without loss of generality, after normalizing and taking α > 0, β > 0, one can
obtain

α =

√√√√√1

2

⎡
⎣

√(
ω2

c2 − (σ 2)

)2

+
( ω

D

)2 + ω2

c2 − σ 2

⎤
⎦

=
√√√√1

2

[√
(k2 − σ 2)2 + 4

µ4 + k2 − σ 2

]
. (7)

β =

√√√√√1

2

⎡
⎣

√(
ω2

c2 − σ 2

)2

+
( ω

D

)2 − ω2

c2 + σ 2

⎤
⎦

=
√√√√1

2

[√
(k2 − σ 2)2 + 4

µ4 + k2 + σ 2

]
. (8)

Here k is the wave number of thermal waves without the diffusive effect. When the
propagating speed of thermal waves is c → ∞ and the non-homogeneous parameter

is σ → 0, one can obtain α →
√

ω
2D = 1

µ
and β →

√
1
2

ω
D = 1

µ
. So, the wave number

of thermal waves is κ = α + iβ → (1 + i) 1
µ

. In this way, the hyperbolic equation
of heat conduction in the graded materials can be reduced to the classical equation of
Fourier heat conduction.

According to Eqs. 4, 5, and 6, one can see that in FGMs there exists the wave
motion with the form of ϑe−iωt = ϑ0 exp(−σ x)ei(αx−ωt). The wave modes denote
the propagating thermal waves with its amplitude of vibration attenuating in the x
direction.

The general solution of the scattered field of thermal waves in graded materials
determined by Eq. 5 can be described as

ϑ(s) = e−σ x
∞∑

n=−∞
An Hn(κr)einθ , (9)

where Hn(·) is the Hankel function of the first kind, An are the mode coefficients
resulting from the subsurface cylindrical inclusion, and the superscript (s) stands for
the scattered waves. Note that the mode coefficients are determined by satisfying the
boundary conditions of inclusions.
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3 Incidence of Thermal Waves and Total Wave Field

Thermal waves can be generated at the surface of graded materials by the laser beam
with a modulated ultrashort pulse. Assume that a periodic steady thermal wave propa-
gates along the positive x direction. According to the wave function expansion method
[4], the incident waves can be described as

ϑ
(in)
1 = ϑ0 exp(iκb)eiκx = ϑ0 exp(iκb)

∞∑
n=−∞

in Jn(κr)einθ , (10)

where w0 is the temperature amplitude of incident thermal waves, κ is the wave number
of incident waves, and the superscript (in)denotes the incident thermal wave.

When the thermal wave propagates in the semi-infinite structure, it is scattered
by the cylindrical inclusion at first. Then, the outgoing scattered waves are reflected
by the semi-infinite surface. The reflected waves ϑ(f)are scattered by the cylindrical
inclusion again. This complex phenomenon is shown in Fig. 1.

To satisfy the adiabatic boundary conditions at the semi-infinite surface, the image
method is applied, as shown in Fig. 2. The reflected waves at the semi-infinite surface
are described by the virtual image inclusions.

For the image cylindrical inclusion, the thermal waves propagate in the negative x ′
direction, and are described as

ϑ
(in)
2 = ϑ0 exp(iκb)e−iκx ′ = ϑ0 exp(iκb)

∞∑
n=−∞

i−n Jn(κr ′)einθ ′
. (11)

In the local coordinate system (r, θ) of the real inclusion, the scattered field of thermal
waves resulting from the subsurface inclusion can be described as

ϑ
(s)
1 = exp(−σ x)

∞∑
l=1

∞∑
n=−∞

Al
n Hn(κr)einθ . (12)

Fig. 2 Schematic of image
method in a semi-infinite
functionally graded material
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In the local coordinate (r ′, θ ′) of the image inclusion, the scattered field resulting from
the image inclusion can be described as

ϑ
(s)
2 = exp(σ x ′)

∞∑
l=1

∞∑
n=−∞

Bl
n Hn(κr ′)einθ ′

, (13)

It should be noted that Al
n and Bl

n(l = 1, 2, . . . ,∞) are the lth thermal wave mode
coefficients of the real and image inclusions, respectively. They can be determined by
satisfying the boundary condition of the subsurface inclusion.

Thus, the total wave field near the actual and image inclusions in graded materials
is taken to be the superposition of the incident waves, the scattered waves and the
reflected waves at the surface, i.e.,

ϑ
(t)
1 = ϑ

(in)
1 + ϑ

(s)
1 + ϑ

(f)
1 = ϑ

(in)
1 + ϑ

(s)
1 + ϑ

(s)
2 . (14)

ϑ
(t)
2 = ϑ

(in)
2 + ϑ

(s)
2 + ϑ

(f)
2 = ϑ

(in)
2 + ϑ

(s)
2 + ϑ

(s)
1 . (15)

Similarly, part of the incident wave is refracted into the cylindrical inclusions. Inside
the actual and image cylindrical inclusions, the refracted wave is a standing wave and
it is expanded as

ϑ
(r)
1 =

∞∑
l=1

∞∑
n=−∞

Cl
n Jn(κcr)einθ . (16)

ϑ
(r)
2 =

∞∑
l=1

∞∑
n=−∞

El
n Jn(κcr ′)einθ ′

. (17)

where Cl
n and El

n are the lth mode coefficients of the refracted waves, and κc =(
ω2

c1
+ iω

D1

)1/2
with

c1 = √
D1/τ1, (18)

where τ1 is the relaxation time of the cylindrical inclusion.
To make the computation tractable, the expression of temperature fields in the local

coordinate system (r ′, θ ′) should be translated into another local coordinate system
(r, θ). According to the addition theorem for Hankel functions [23], the following
relation can be derived:

Hn(κr ′)einθ ′ =
∞∑

m=−∞
(−1)m−n Hm−n(2κb)Jm(κr)eimθ . (19)
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Similarly,

Hn(κr)einθ =
∞∑

m=−∞
Hm−n(2κb)Jm(κr ′)eimθ ′. (20)

So, the following translation of coordinate systems can be obtained:

exp(σr ′ cos θ ′)
∞∑

n=−∞
Hn(κr ′)einθ ′ = exp[σ(2b + r cos θ)]

×
∞∑

n=−∞

∞∑
m=−∞

(−1)m−n Hm−n(2κb)Jm(κr)eimθ ,

(21)

where r ′ = √
r2 + 4b2 + 4rb cos θ , and cos θ ′ = (r ′)2 + 4b2 − r2

4br ′ .

exp(−σr cos θ)

∞∑
n=−∞

Hn(κr)einθ

= exp[σ(2b − r ′ cos θ ′)]
∞∑

n=−∞

∞∑
m=−∞

Hm−n(2κb)Jm(κr ′)eimθ ′
, (22)

where r = √
(r ′)2 + 4b2 − 4r ′b cos θ ′, and cos θ = −r2 + 4b2 − (r ′)2

4br
.

4 Boundary Conditions Around the Cylindrical Inclusion

In this study, a conducting cylindrical inclusion is considered. The boundary conditions
around the inclusion are expressed as

ϑ(t) = ϑ(r), q(t)
r = q(r)

r for r = a, (23)

where qr is the heat flow density in the radial direction corresponding to ϑ , and
qr = −λ∂ϑ

∂r .

5 Mode Coefficient of Waves and Distribution of Temperature

Multiple scattering of thermal waves takes place between the actual and image inclu-
sions. By satisfying the boundary conditions around the inclusions, the mode coeffi-
cients of thermal waves are determined. Substituting Eqs. 15–18 into Eq. 23,
multiplying both sides of Eq. 23 by e−isθ , and then integrating from −π to π , the
following recurrence formula can be obtained:
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when l = 1, the relations among every mode coefficient of the scattered waves are
written as

A1
s exp(−σa cos θ)Hs(κa) − C1

s Js(κca) = −is exp(iκb)Js(κa), (24)

A1
s exp(−σa cos θ) {−σa cos θ Hs(κa) + [s Hs(κa) − κaHs+1(κa)]} − λ1

λ
C1

s

× [
s Js(κca) − κca Js+1(κca)

] = −is exp(iκb)
[
s Js(κa) − κa Js+1(κa)

]
, (25)

B1
s exp(σa cos θ ′)H (1)

s (κa) − E1
s Js(κca) = −i−s exp(iκb)Js(κa), (26)

B1
s exp(σa cos θ ′){σa cos θ ′Hs(κa) + [s Hs(κa) − κaHs+1(κa)]} − λ1

λ
E1

s

× [
s Js(κca) − κca Js+1(κca)

] = −i-s exp(iκb)[s Js(κa) − κa Js+1(κa)], (27)

when l = 2, 3, . . . ,∞, the relations among every mode coefficient of the thermal
waves are written as

exp(−σa cos θ)H (1)
s (κa)Al

s − Cl
s Js(κca)

= −Bl−1
s exp[σ(2b + a cos θ)]

×
∞∑

n=−∞
(−1)s−n Hs−n(2κb)Js(κa), (l = 2, 3, . . . ,∞), (28)

Al
s exp(−σa cos θ){−σa cos θ Hs(κa) + [s Hs(κa) − κaHs+1(κa)]}

−λ1

λ
C1

s [s Js(κca) − κca Js+1(κca)]

= −Bl−1
s exp[σ(2b + a cos θ)]

{
σa cos θ

∞∑
n=−∞

(−1)s−n Hs−n(2κb)Js(κa)

+
∞∑

n=−∞
(−1)s−n Hs−n(2κb)[s Js(κa) − κa Js+1(κa)]

}
, (29)

exp(σa cos θ ′)Hs(κa)Bl
s − El

s Js(κca)

= −Al−1
s exp[σ(2b − a cos θ ′)]

×
∞∑

n=−∞
Hs−n(2κb)Js(κa), (l = 2, 3, . . . ,∞), (30)
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Bl
s exp(σa cos θ ′){σa cos θ ′Hs(κa)

+[s Hs(κa) − κaHs+1(κa)]} − λ1

λ
E1

s [s Js(κca) − κca Js+1(κca)]

= −Al−1
s exp[σ(2b − a cos θ ′)]

{
−σa cos θ ′

∞∑
n=−∞

Hs−n(2κb)Js(κa)

+
∞∑

n=−∞
Hs−n(2κb)[s Js(κa) − κa Js+1(κa)]

}
, (31)

Equations 24–31 are the infinite algebraic equations determining the mode coefficients
of thermal waves.

In the following analysis, it is convenient to make the variables dimensionless. To
accomplish this step, we may introduce a characteristic length, a, where a is the radius
of the subsurface inclusion. The following dimensionless variables and quantities have
been chosen for computation: the ratio of embedded depth is b∗ = b/a = 1.5 to 3.0,
and the non-homogeneous parameter of FGMs is σ ∗ = σa = − 1.0 to 1.0. The ratio
of the thermal conductivity is λ∗ = λ1/λ0 = 2.0 to 50.0, τ ∗ = τ1/τ = 101 to 105, and
D∗ = D1/D0 = 2.0 to 50.0. The dimensionless temperature is ϑ∗ = ϑ/ϑ0. Thus, the
dimensionless complex wave number is κ∗ = κa = αa + iβa, and they are written as

αa =

√√√√
√

1

4

[
(ka)2 − (σa)2

]2 +
(

a

µ

)4

+ 1

2

[
(ka)2 − (σa)2

]
, (32)

βa =

√√√√
√

1

4

[
(ka)2 − (σa)2

]2 +
(

a

µ

)4

− 1

2

[
(ka)2 + (σa)2

]
. (33)

So, the expression of the temperature distribution at the surface of graded materials is
written as

ϑ = ϑ0 exp(iκb)

∞∑
n=−∞

in Jn(κr)einθ + exp(−σ x)

∞∑
l=1

∞∑
n=−∞

Al
n Hn(κr)einθ

+ exp[σ(2b + a cos θ)]
∞∑

l=1

∞∑
n=−∞

∞∑
m=−∞

(−1)m−n Bl
n Hm−n(2κb)Jm(κr)eimθ .

(34)

here x = 0 to 2.

6 Numerical Examples

If there exists a defect in the materials, the multiple scattering of thermal waves between
the subsurface cylinder and the surface will occur, which influences the distribution
of temperature at the surface of graded materials. Periodic heating will bring about

123



1066 Int J Thermophys (2009) 30:1055–1073

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

2

1

3

4

Distance *y

N
or

m
al

iz
ed

 te
m

pe
ra

tu
re

 a
t t

he
 s

ur
fa

ce

1 Obtained from Ref. [4]
2 Obtained from this paper
3 b*=1.2
4 b*=2.5

Fig. 3 Temperature at the semi-infinite surface of FGMs ( f = 1 Hz, k = 0, σ∗ = 0, λ∗ = D∗ = 5.0)

the temperature variation inside the materials. By making use of the variation of the
temperature amplitude and the phase difference resulting from the defect, the imaging
of thermal waves can be obtained. By measuring the temperature and phase variation
at the surface of materials, the defect embedded beneath the surface can be estimated
and evaluated.

To validate the present thermodynamic model, comparison with the previous litera-
ture is given. Figure 3 illustrates the temperature distribution at the surface of materials
(x = −b) with parameters: f = 1 Hz, k = 0, σ ∗ = 0, λ∗ = 5.0, D∗ = 5.0, and
b∗ = 1.0615, which corresponds to the case of pure heat diffusion and the case
without wave motion terms in the equation of heat conduction in homogeneous mate-
rials. In this case, the thermal conductivity and thermal diffusivity are given by λ0 =
0.4 W · m−1 · K−1 and D0 = 0.1 m2 · s−1, respectively. The radius of the cylindrical
inclusion is a = 0.65 mm, and the embedded depth is b = 0.69 mm. It should be
noted that k = 0 denotes the relaxation time of FGMs and inclusion is sufficiently
small. These parameters are consistent with those in Ref. [1]. From Fig. 3, it can be
seen that the computing results of the temperature at the surface of materials show
good agreement with those in Ref. [4]. At the location of (−b, 0), the temperature
reaches the minimum. In Fig. 3, b∗ = 2.5 means that the effect of the inclusion on the
temperature disappears. As expected, the temperature at the surface has no variation. It
is also clear that with the increase of the value of b, the variation of the temperature at
the surface decreases. So, the effect of the inclusion on the temperature at the surface
decreases with the increase of the distance between the inclusion and the semi-infinite
surface.

Figure 4 illustrates the temperature distribution at the surface of FGMs with param-
eters: σ ∗ = 0, b∗ = 1.0615, k = 0, and f = 1 Hz. As can be seen, the temperature
above the conducting cylindrical inclusion decreases because of the existence of the
inclusion. The greater the ratios of λ∗and D∗, the more evident the decrease of tem-
perature at the surface. The physical explanation of this result is that, in the case of
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Fig. 4 Temperature at the semi-infinite surface of FGMs ( f = 1 Hz, k = 0, σ∗ = 0, b∗ = 1.0615)
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Fig. 5 Phase of temperature at the semi-infinite surface of FGMs ( f = 1 Hz, k = 0, σ∗ = 0, b∗ = 1.0615)

a highly conducting cylinder, the incident and the scattered thermal waves are out
of phase, so the superposition can be understood as a destructive interference. This
is characteristic of curved buried features (cylinders, spheres, etc.), and it does not
appear in planar features.

Figure 5 illustrates the phase change at the surface of FGMs with parameters: σ ∗ =
0, b∗ = 1.0615, k = 0, and f = 1 Hz. As can be seen, the phase of temperature
above the conducting cylindrical inclusion increases because of the existence of the
inclusion. The greater the ratios of λ∗and D∗, the more evident the increase of the
phase at the surface. Comparing with the results in Fig. 4, it is clear that the variations
of material properties have greater influence on the phase of the surface temperature.
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Fig. 6 Temperature at the semi-infinite surface of FGMs ( f = 1 Hz, k = 0, λ∗ = D∗ = 5.0, b∗ =
1.0615)

The temperature distribution at the surface of FGMs with parameters: b∗ = 1.0615,
k = 0, λ∗ = 5.0, D∗ = 5.0, and f = 1 Hz is depicted in Fig. 6. It can be seen that
the variation of the temperature above the conducting cylindrical inclusion increases
with the decrease of the non-homogeneous parameter. With the increase of the value
of y∗, the temperature at the surface becomes stable. When the non-homogeneous
parameter is large, the variation of the thermal conductivity near the semi-infinite sur-
face of FGMs is small. So, the effect of the conductive inclusion on the temperature
at the surface is small. Thus, the decrease of the temperature above the conducting
cylindrical inclusion is small.

The phase change at the surface of FGMs with parameters: b∗ = 1.0615, k = 0,
λ∗ = D∗ = 5.0, and f = 1 Hz is depicted in Fig. 7. It can be seen that the phase
change of the temperature above the conducting cylindrical inclusion increases with
the decrease of the non-homogeneous parameter. With the increase of the value of y∗,
the phase change of the temperature at the surface becomes stable. Comparing with
the results in Fig. 6, it is clear that the variation of the non-homogeneous parameter
has greater influence on the phase of the surface temperature.

Figure 8 illustrates the temperature distribution at the surface of FGMs with param-
eters: σ ∗ = 0, b∗ = 1.0615, λ∗ = D∗ = 5.0, and k = 0. It can be seen that the
temperature above the conducting cylindrical inclusion decreases because of the exis-
tence of the inclusion. When the frequency of thermal waves is small, the decrease
of the temperature above the conducting cylindrical inclusion is large. When the fre-
quency of thermal waves is large, the decrease of the temperature above the conducting
cylindrical inclusion is small. However, in the region of low frequency, the variation
of the temperature at the surface with the value of y∗ is small; in the region of high
frequency, the variation of the temperature at the surface with the value of y∗ is large.

Figure 9 shows the temperature distribution at the surface of FGMs with parame-
ters: b∗ = 1.0615, k = 0, λ∗ = 5.0, D∗ = 5.0, and f = 5 Hz. Comparing with the
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Fig. 7 Phase of temperature at the semi-infinite surface of FGMs ( f = 1 Hz, k = 0, λ∗ = D∗ =
5.0, σ∗ = 0, b∗ = 1.0615)
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Fig. 8 Temperature at the semi-infinite surface of FGMs (k = 0, λ∗ = D∗ = 5.0, σ∗ = 0, b∗ = 1.0615)

results in Fig. 5, it can be seen that the effect of the non-homogeneous parameter on
the temperature above the conducting cylindrical inclusion decreases with the increase
of the incident frequency of thermal waves.

To find the effect of the relaxation time of the cylindrical inclusion on the temper-
ature at the semi-infinite surface, Fig. 10 is given. It can be seen that with the increase
of the relaxation time of the cylindrical inclusion, the temperature above the conduct-
ing cylindrical inclusion decreases greatly. So, the effect of the relaxation time of the
cylindrical inclusion on the temperature increases with the value of τ ∗. When the value
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Fig. 9 Temperature at the semi-infinite surface of FGMs ( f = 5 Hz, k = 0, λ∗ = D∗ = 5.0, b∗ =
1.0615)
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Fig. 10 Temperature at the semi-infinite surface of FGMs ( f = 1 Hz, λ∗ = D∗ = 5.0, σ∗ = 0, b∗ =
1.0615)

of τ ∗ is small, the variation of the relaxation time of the cylindrical inclusion has little
effect on the temperature at the semi-infinite surface.

To find the effect of the relaxation time of the cylindrical inclusion on the tem-
perature at the semi-infinite surface in the region of high frequency, Fig. 11 is given.
Comparing with the results in Fig. 8, it is clear that the effect of the relaxation time of
the cylindrical inclusion on the temperature above the conducting cylindrical inclusion
increases with the increase of the wave frequency.

Finally, the effect of the relaxation time of the cylindrical inclusion on the phase
change at the surface of FGMs is shown in Fig. 12. With the increase of the relaxation
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Fig. 11 Temperature at the semi-infinite surface of FGMs ( f = 5 Hz, λ∗ = D∗ = 5.0, σ∗ = 0, b∗ =
1.0615)
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Fig. 12 Phase of temperature at the semi-infinite surface of FGMs ( f = 1 Hz, λ∗ = D∗ = 5.0, σ∗ =
0, b∗ = 1.0615)

time of the cylindrical inclusion, the effect of it on the phase change of the temperature
at the surface increases. Comparing with the results in Fig. 10, it can be seen that the
variation of the relaxation time of the cylindrical inclusion has greater influence on
the phase of the surface temperature.
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7 Conclusion

Applying the non-Fourier law of heat conduction, the propagation of thermal waves
in semi-infinite FGMs with an embedded cylindrical inclusion has been considered,
a general solution for the total temperature field in FGMs is presented. When the
propagating speed of thermal waves is c → ∞ and the non-homogeneous parameter
is σ → 0, the non-Fourier wave model of heat conduction in FGMs is reduced to
the classical model of Fourier’s thermal diffusion. The good agreement of the sur-
face temperature of homogeneous materials with the previous literature confirms the
validity of the present thermodynamic model.

It has been found that the effect of the inclusion on the temperature at the
surface decreases with the increase of the distance between the inclusion and the semi-
infinite surface. The temperature above the conducting cylindrical inclusion decreases
because of the existence of the inclusion. The variation of temperature at the surface
increases with increases in the ratios of λ∗ and D∗. The temperature above the con-
ducting cylindrical inclusion increases with the increase of the non-homogeneous
parameter. The decrease of the temperature above the conducting cylindrical inclu-
sion becomes small with the increase of the frequency of thermal waves is large, and
the decrease of the temperature above the conducting cylindrical inclusion is small.
The effect of the non-homogeneous parameter on the temperature above the conduct-
ing cylindrical inclusion also decreases with the increase of the incident frequency of
thermal waves. The temperature above the conducting cylindrical inclusion decreases
with the increase of the relaxation time of the cylindrical inclusion. With the increase
of the wave frequency, the effect of the relaxation time of the cylindrical inclusion on
the temperature increases. The material properties, the non-homogeneous parameter,
and the frequency of thermal waves have similar effects on the phase of the surface
temperature of FGMs. However, the phase change of the temperature is more sensitive
to these parameters.

The results of this study can provide a theoretical foundation and references for the
detection of defects by using laser heating in FGMs, and the analysis and computation
of infrared thermal imaging in FGMs.
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